skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vitek, ed., Olga"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract MotivationUbiquitination is widely involved in protein homeostasis and cell signaling. Ubiquitin E3 ligases are critical regulators of ubiquitination that recognize and recruit specific ubiquitination targets for the final rate-limiting step of ubiquitin transfer reactions. Understanding the ubiquitin E3 ligase activities will provide knowledge in the upstream regulator of the ubiquitination pathway and reveal potential mechanisms in biological processes and disease progression. Recent advances in mass spectrometry-based proteomics have enabled deep profiling of ubiquitylome in a quantitative manner. Yet, functional analysis of ubiquitylome dynamics and pathway activity remains challenging. ResultsHere, we developed a UbE3-APA, a computational algorithm and stand-alone python-based software for Ub E3 ligase Activity Profiling Analysis. Combining an integrated annotation database with statistical analysis, UbE3-APA identifies significantly activated or suppressed E3 ligases based on quantitative ubiquitylome proteomics datasets. Benchmarking the software with published quantitative ubiquitylome analysis confirms the genetic manipulation of SPOP enzyme activity through overexpression and mutation. Application of the algorithm in the re-analysis of a large cohort of ubiquitination proteomics study revealed the activation of PARKIN and the co-activation of other E3 ligases in mitochondria depolarization-induced mitophagy process. We further demonstrated the application of the algorithm in the DIA (data-independent acquisition)-based quantitative ubiquitylome analysis. Availability and implementationSource code and binaries are freely available for download at URL: https://github.com/Chenlab-UMN/Ub-E3-ligase-Activity-Profiling-Analysis, implemented in python and supported on Linux and MS Windows. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  2. Abstract SummaryThe number of cells measured in single-cell transcriptomic data has grown fast in recent years. For such large-scale data, subsampling is a powerful and often necessary tool for exploratory data analysis. However, the easiest random subsampling is not ideal from the perspective of preserving rare cell types. Therefore, diversity-preserving subsampling is required for fast exploration of cell types in a large-scale dataset. Here, we propose scSampler, an algorithm for fast diversity-preserving subsampling of single-cell transcriptomic data. Availability and implementationscSampler is implemented in Python and is published under the MIT source license. It can be installed by “pip install scsampler” and used with the Scanpy pipline. The code is available on GitHub: https://github.com/SONGDONGYUAN1994/scsampler. An R interface is available at: https://github.com/SONGDONGYUAN1994/rscsampler. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  3. Abstract MotivationAdvances in mass spectrometry have led to the development of mass spectrometers with ion mobility spectrometry capabilities and dual-source instrumentation; however, the current software ecosystem lacks interoperability with downstream data analysis using open-source software and pipelines. ResultsHere, we present TIMSCONVERT, a data conversion high-throughput workflow from timsTOF Pro/fleX mass spectrometer raw data files to mzML and imzML formats that incorporates ion mobility data while maintaining compatibility with data analysis tools. We showcase several examples using data acquired across different experiments and acquisition modalities on the timsTOF fleX MS. Availability and implementationTIMSCONVERT and its documentation can be found at https://github.com/gtluu/timsconvert and is available as a standalone command-line interface tool for Windows and Linux, NextFlow workflow and online in the Global Natural Products Social (GNPS) platform. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less